Java 类名:com.alibaba.alink.operator.batch.similarity.StringNearestNeighborPredictBatchOp
Python 类名:StringNearestNeighborPredictBatchOp
本算法支持Levenshtein Distance,Longest Common SubString,String Subsequence Kernel,Cosine四种相似度精确计算方式,通过选择metric参数可计算不同的相似度。
该功能由训练和预测组成,支持计算1. 求最近邻topN 2. 求radius范围内的邻居。该功能由预测时候的topN和radius参数控制, 如果填写了topN,则输出最近邻,如果填写了radius,则输出radius范围内的邻居。
Levenshtein(Levenshtein Distance), 相似度=(1-距离)/length,length为两个字符长度的最大值,应选metric的参数为LEVENSHTEIN_SIM。
LCS(Longest Common SubString), 相似度=(1-距离)/length,length为两个字符长度的最大值,应选择metric的参数为LCS_SIM。
SSK(String Subsequence Kernel)支持相似度计算,应选择metric的参数为SSK。
Cosine(Cosine)支持相似度计算,应选择metric的参数为COSINE。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [STRING] | |
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
radius | radius值 | radius值 | Double | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
topN | TopN的值 | TopN的值 | Integer | x >= 1 | null | |
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [0, "abcde", "aabce"], [1, "aacedw", "aabbed"], [2, "cdefa", "bbcefa"], [3, "bdefh", "ddeac"], [4, "acedm", "aeefbc"] ]) inOp = BatchOperator.fromDataframe(df, schemaStr='id long, text1 string, text2 string') train = StringNearestNeighborTrainBatchOp().setIdCol("id").setSelectedCol("text1").setMetric("LEVENSHTEIN_SIM").linkFrom(inOp) predict = StringNearestNeighborPredictBatchOp().setSelectedCol("text2").setTopN(3).linkFrom(train, inOp) predict.print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.similarity.StringNearestNeighborPredictBatchOp; import com.alibaba.alink.operator.batch.similarity.StringNearestNeighborTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class StringNearestNeighborPredictBatchOpTest { @Test public void testStringNearestNeighborPredictBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of(0, "abcde", "aabce"), Row.of(1, "aacedw", "aabbed"), Row.of(2, "cdefa", "bbcefa"), Row.of(3, "bdefh", "ddeac"), Row.of(4, "acedm", "aeefbc") ); BatchOperator <?> inOp = new MemSourceBatchOp(df, "id int, text1 string, text2 string"); BatchOperator <?> train = new StringNearestNeighborTrainBatchOp().setIdCol("id").setSelectedCol("text1") .setMetric("LEVENSHTEIN_SIM").linkFrom(inOp); BatchOperator <?> predict = new StringNearestNeighborPredictBatchOp().setSelectedCol("text2").setTopN(3) .linkFrom(train, inOp); predict.print(); } }
id | text1 | text2 |
---|---|---|
0 | abcde | {“ID”:“[0,1,4]”,“METRIC”:“[0.6,0.5,0.19999999999999996]”} |
1 | aacedw | {“ID”:“[1,0,4]”,“METRIC”:“[0.5,0.33333333333333337,0.33333333333333337]”} |
2 | cdefa | {“ID”:“[2,3,1]”,“METRIC”:“[0.5,0.5,0.33333333333333337]”} |
3 | bdefh | {“ID”:“[2,3,4]”,“METRIC”:“[0.4,0.4,0.19999999999999996]”} |
4 | acedm | {“ID”:“[4,3,2]”,“METRIC”:“[0.33333333333333337,0.33333333333333337,0.33333333333333337]”} |