Java 类名:com.alibaba.alink.operator.batch.similarity.VectorApproxNearestNeighborPredictBatchOp
Python 类名:VectorApproxNearestNeighborPredictBatchOp
该功能由训练和预测组成,该组件为预测功能
该功能由预测时候的topN和radius参数控制, 如果填写了topN,则输出最近邻,如果填写了radius,则输出radius范围内的邻居。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
radius | radius值 | radius值 | Double | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
topN | TopN的值 | TopN的值 | Integer | x >= 1 | null | |
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [0, "0 0 0"], [1, "1 1 1"], [2, "2 2 2"] ]) inOp = BatchOperator.fromDataframe(df, schemaStr='id int, vec string') train = VectorApproxNearestNeighborTrainBatchOp().setIdCol("id").setSelectedCol("vec").linkFrom(inOp) predict = VectorApproxNearestNeighborPredictBatchOp().setSelectedCol("vec").setTopN(3).linkFrom(train, inOp) predict.print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.similarity.VectorApproxNearestNeighborPredictBatchOp; import com.alibaba.alink.operator.batch.similarity.VectorApproxNearestNeighborTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class VectorApproxNearestNeighborPredictBatchOpTest { @Test public void testVectorApproxNearestNeighborPredictBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of(0, "0 0 0"), Row.of(1, "1 1 1"), Row.of(2, "2 2 2") ); BatchOperator <?> inOp = new MemSourceBatchOp(df, "id int, vec string"); BatchOperator <?> train = new VectorApproxNearestNeighborTrainBatchOp().setIdCol("id").setSelectedCol("vec") .linkFrom(inOp); BatchOperator <?> predict = new VectorApproxNearestNeighborPredictBatchOp().setSelectedCol("vec").setTopN(3) .linkFrom(train, inOp); predict.print(); } }
id | vec |
---|---|
0 | {“ID”:“[0,1,2]”,“METRIC”:“[0.0,1.7320508075688772,3.4641016151377544]”} |
1 | {“ID”:“[1,2,0]”,“METRIC”:“[0.0,1.7320508075688772,1.7320508075688772]”} |
2 | {“ID”:“[2,1,0]”,“METRIC”:“[0.0,1.7320508075688772,3.4641016151377544]”} |