Java 类名:com.alibaba.alink.operator.batch.similarity.TextNearestNeighborTrainBatchOp
Python 类名:TextNearestNeighborTrainBatchOp
文本相似度是在字符串相似度的基础上,基于词,计算两两文章或者句子之间的相似度,文章或者句子需要以空格分割的文本,计算方式和字符串相似度类似:支持Levenshtein Distance,Longest Common SubString,String Subsequence Kernel,Cosine三种精确相似度计算方式,通过选择metric参数可计算不同的相似度。
该功能由训练和预测组成,支持计算1. 求最近邻topN 2. 求radius范围内的邻居。该功能由预测时候的topN和radius参数控制, 如果填写了topN,则输出最近邻,如果填写了radius,则输出radius范围内的邻居。
Levenshtein(Levenshtein Distance)相似度=(1-距离)/length,length为两个字符长度的最大值离,应选metric的参数为LEVENSHTEIN_SIM。
LCS(Longest Common SubString)相似度=(1-距离)/length,length为两个字符长度的最大值,应选择metric的参数为LCS_SIM。
SSK(String Subsequence Kernel)支持相似度计算,应选择metric的参数为SSK。
Cosine(Cosine)支持相似度计算,应选择metric的参数为COSINE。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
idCol | id列名 | id列名 | String | ✓ | ||
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [STRING] | |
lambda | 匹配字符权重 | 匹配字符权重,SSK中使用 | Double | 0.5 | ||
metric | 距离类型 | 用于计算的距离类型 | String | “LEVENSHTEIN_SIM”, “LEVENSHTEIN”, “LCS_SIM”, “LCS”, “SSK”, “COSINE” | “LEVENSHTEIN_SIM” | |
windowSize | 窗口大小 | 窗口大小 | Integer | x >= 1 | 2 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [0, "a b c d e", "a a b c e"], [1, "a a c e d w", "a a b b e d"], [2, "c d e f a", "b b c e f a"], [3, "b d e f h", "d d e a c"], [4, "a c e d m", "a e e f b c"] ]) inOp = BatchOperator.fromDataframe(df, schemaStr='id long, text1 string, text2 string') train = TextNearestNeighborTrainBatchOp().setIdCol("id").setSelectedCol("text1").setMetric("LEVENSHTEIN_SIM").linkFrom(inOp) predict = TextNearestNeighborPredictBatchOp().setSelectedCol("text2").setTopN(3).linkFrom(train, inOp) predict.print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.similarity.TextNearestNeighborPredictBatchOp; import com.alibaba.alink.operator.batch.similarity.TextNearestNeighborTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class TextNearestNeighborTrainBatchOpTest { @Test public void testTextNearestNeighborTrainBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of(0, "a b c d e", "a a b c e"), Row.of(1, "a a c e d w", "a a b b e d"), Row.of(2, "c d e f a", "b b c e f a"), Row.of(3, "b d e f h", "d d e a c"), Row.of(4, "a c e d m", "a e e f b c") ); BatchOperator <?> inOp = new MemSourceBatchOp(df, "id int, text1 string, text2 string"); BatchOperator <?> train = new TextNearestNeighborTrainBatchOp().setIdCol("id").setSelectedCol("text1") .setMetric("LEVENSHTEIN_SIM").linkFrom(inOp); BatchOperator <?> predict = new TextNearestNeighborPredictBatchOp().setSelectedCol("text2").setTopN(3).linkFrom( train, inOp); predict.print(); } }
id | text1 | text2 |
---|---|---|
0 | a b c d e | {“ID”:“[0,1,4]”,“METRIC”:“[0.6,0.5,0.19999999999999996]”} |
1 | a a c e d w | {“ID”:“[1,0,4]”,“METRIC”:“[0.5,0.33333333333333337,0.33333333333333337]”} |
2 | c d e f a | {“ID”:“[3,2,4]”,“METRIC”:“[0.5,0.5,0.33333333333333337]”} |
3 | b d e f h | {“ID”:“[3,2,4]”,“METRIC”:“[0.4,0.4,0.19999999999999996]”} |
4 | a c e d m | {“ID”:“[3,2,4]”,“METRIC”:“[0.33333333333333337,0.33333333333333337,0.33333333333333337]”} |