Java 类名:com.alibaba.alink.operator.batch.similarity.VectorApproxNearestNeighborTrainBatchOp
Python 类名:VectorApproxNearestNeighborTrainBatchOp
该功能由训练和预测组成,训练时指定距离计算方式,生成最近邻模型
可选择的距离计算方式包含EUCLIDEAN和JACCARD两种,同时支持KDTREE和LSH两种近似方法。
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| idCol | id列名 | id列名 | String | ✓ | ||
| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | |
| metric | 距离度量方式 | 距离类型 | String | “EUCLIDEAN”, “JACCARD” | “EUCLIDEAN” | |
| numHashTables | 哈希表的数目 | 哈希表的数目 | Integer | 1 | ||
| numProjectionsPerTable | 每个哈希表中的哈希函数个数 | 每个哈希表中的哈希函数个数 | Integer | 1 | ||
| projectionWidth | 桶的宽度 | 桶的宽度 | Double | 1.0 | ||
| seed | 采样种子 | 采样种子 | Long | 0 | ||
| solver | 近似方法 | 近似方法,包括KDTREE和LSH | String | “KDTREE”, “LSH”, “LOCAL_LSH” | “KDTREE” |
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
[0, "0 0 0"],
[1, "1 1 1"],
[2, "2 2 2"]
])
inOp = BatchOperator.fromDataframe(df, schemaStr='id int, vec string')
train = VectorApproxNearestNeighborTrainBatchOp().setIdCol("id").setSelectedCol("vec").linkFrom(inOp)
predict = VectorApproxNearestNeighborPredictBatchOp().setSelectedCol("vec").setTopN(3).linkFrom(train, inOp)
predict.print()
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.similarity.VectorApproxNearestNeighborPredictBatchOp;
import com.alibaba.alink.operator.batch.similarity.VectorApproxNearestNeighborTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class VectorApproxNearestNeighborTrainBatchOpTest {
@Test
public void testVectorApproxNearestNeighborTrainBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of(0, "0 0 0"),
Row.of(1, "1 1 1"),
Row.of(2, "2 2 2")
);
BatchOperator <?> inOp = new MemSourceBatchOp(df, "id int, vec string");
BatchOperator <?> train = new VectorApproxNearestNeighborTrainBatchOp().setIdCol("id").setSelectedCol("vec")
.linkFrom(inOp);
BatchOperator <?> predict = new VectorApproxNearestNeighborPredictBatchOp().setSelectedCol("vec").setTopN(3)
.linkFrom(train, inOp);
predict.print();
}
}
| id | vec |
|---|---|
| 0 | {“ID”:“[0,1,2]”,“METRIC”:“[0.0,1.7320508075688772,3.4641016151377544]”} |
| 1 | {“ID”:“[1,2,0]”,“METRIC”:“[0.0,1.7320508075688772,1.7320508075688772]”} |
| 2 | {“ID”:“[2,1,0]”,“METRIC”:“[0.0,1.7320508075688772,3.4641016151377544]”} |