Java 类名:com.alibaba.alink.operator.batch.similarity.VectorNearestNeighborTrainBatchOp
Python 类名:VectorNearestNeighborTrainBatchOp
该组件为向量最近邻的训练过程,在计算时与 VectorNearestNeighborPredictBatchOp 配合使用。
支持的距离计算方式包含EUCLIDEAN,COSINE,INNERPRODUCT(内积),CITYBLOCK(曼哈顿距离),JACCARD,PEARSON
默认距离EUCLIDEAN
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
idCol | id列名 | id列名 | String | ✓ | ||
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | |
metric | 距离度量方式 | 聚类使用的距离类型 | String | “EUCLIDEAN”, “COSINE”, “INNERPRODUCT”, “CITYBLOCK”, “JACCARD”, “PEARSON” | “EUCLIDEAN” |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [0, "0 0 0"], [1, "1 1 1"], [2, "2 2 2"] ]) inOp = BatchOperator.fromDataframe(df, schemaStr='id int, vec string') train = VectorNearestNeighborTrainBatchOp().setIdCol("id").setSelectedCol("vec").linkFrom(inOp) predict = VectorNearestNeighborPredictBatchOp().setSelectedCol("vec").setTopN(3).linkFrom(train, inOp) predict.print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.similarity.VectorNearestNeighborPredictBatchOp; import com.alibaba.alink.operator.batch.similarity.VectorNearestNeighborTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class VectorNearestNeighborTrainBatchOpTest { @Test public void testVectorNearestNeighborTrainBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of(0, "0 0 0"), Row.of(1, "1 1 1"), Row.of(2, "2 2 2") ); BatchOperator <?> inOp = new MemSourceBatchOp(df, "id int, vec string"); BatchOperator <?> train = new VectorNearestNeighborTrainBatchOp().setIdCol("id").setSelectedCol("vec").linkFrom( inOp); BatchOperator <?> predict = new VectorNearestNeighborPredictBatchOp().setSelectedCol("vec").setTopN(3).linkFrom( train, inOp); predict.print(); } }
id | vec |
---|---|
0 | {“ID”:“[0,1,2]”,“METRIC”:“[0.0,1.7320508075688772,3.4641016151377544]”} |
1 | {“ID”:“[1,2,0]”,“METRIC”:“[0.0,1.7320508075688772,1.7320508075688772]”} |
2 | {“ID”:“[2,1,0]”,“METRIC”:“[0.0,1.7320508075688772,3.4641016151377544]”} |