Java 类名:com.alibaba.alink.pipeline.dataproc.vector.VectorAssembler
Python 类名:VectorAssembler
数据结构转换,将多列数据(可以是向量列也可以是数值列)转化为一列向量数据。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
outputCol | 输出结果列列名 | 输出结果列列名,必选 | String | ✓ | ||
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | ||
handleInvalidMethod | 处理无效值的方法 | 处理无效值的方法,可取 error, skip | String | “ERROR”, “SKIP” | “ERROR” | |
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["0", "$6$1:2.0 2:3.0 5:4.3", "3.0 2.0 3.0"], ["1", "$8$1:2.0 2:3.0 7:4.3", "3.0 2.0 3.0"], ["2", "$8$1:2.0 2:3.0 7:4.3", "2.0 3.0"] ]) data = BatchOperator.fromDataframe(df, schemaStr="id string, c0 string, c1 string") res = VectorAssembler()\ .setSelectedCols(["c0", "c1"])\ .setOutputCol("table2vec") res.transform(data).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.pipeline.dataproc.vector.VectorAssembler; import org.junit.Test; import java.util.Arrays; import java.util.List; public class VectorAssemblerTest { @Test public void testVectorAssembler() throws Exception { List <Row> df = Arrays.asList( Row.of("0", "$6$1:2.0 2:3.0 5:4.3", "3.0 2.0 3.0"), Row.of("1", "$8$1:2.0 2:3.0 7:4.3", "3.0 2.0 3.0"), Row.of("2", "$8$1:2.0 2:3.0 7:4.3", "2.0 3.0") ); MemSourceBatchOp data = new MemSourceBatchOp(df, "id string, c0 string, c1 string"); VectorAssembler res = new VectorAssembler() .setSelectedCols("c0", "c1") .setOutputCol("table2vec"); res.transform(data).print(); } }
id | c0 | c1 | table2vec |
---|---|---|---|
0 | $6$1:2.0 2:3.0 5:4.3 | 3.0 2.0 3.0 | $9$1:2.0 2:3.0 5:4.3 6:3.0 7:2.0 8:3.0 |
1 | $8$1:2.0 2:3.0 7:4.3 | 3.0 2.0 3.0 | $11$1:2.0 2:3.0 7:4.3 8:3.0 9:2.0 10:3.0 |
2 | $8$1:2.0 2:3.0 7:4.3 | 2.0 3.0 | $10$1:2.0 2:3.0 7:4.3 8:2.0 9:3.0 |