该文档涉及的组件

向量绝对值最大化模型 (VectorMaxAbsScalerModel)

Java 类名:com.alibaba.alink.pipeline.dataproc.vector.VectorMaxAbsScalerModel

Python 类名:VectorMaxAbsScalerModel

功能介绍

  • vector绝对值最大标准化是对vector数据按照最大绝对值进行标准化的组件, 将数据归一到-1和1之间。
  • 模型由VectorMaxAbsScaler训练产生

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
modelFilePath 模型的文件路径 模型的文件路径 String null
outputCol 输出结果列 输出结果列列名,可选,默认null String null
overwriteSink 是否覆写已有数据 是否覆写已有数据 Boolean false
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1
modelStreamFilePath 模型流的文件路径 模型流的文件路径 String null
modelStreamScanInterval 扫描模型路径的时间间隔 描模型路径的时间间隔,单位秒 Integer 10
modelStreamStartTime 模型流的起始时间 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) String null

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
    ["a", "10.0, 100"],
    ["b", "-2.5, 9"],
    ["c", "100.2, 1"],
    ["d", "-99.9, 100"],
    ["a", "1.4, 1"],
    ["b", "-2.2, 9"],
    ["c", "100.9, 1"]
])
data = BatchOperator.fromDataframe(df, schemaStr="col string, vec string")

res = VectorMaxAbsScaler()\
           .setSelectedCol("vec")
model = res.fit(data)
model.transform(data).collectToDataframe()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.pipeline.dataproc.vector.VectorMaxAbsScaler;
import com.alibaba.alink.pipeline.dataproc.vector.VectorMaxAbsScalerModel;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class VectorMaxAbsScalerModelTest {
	@Test
	public void testVectorMaxAbsScalerModel() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of("a", "10.0, 100"),
			Row.of("b", "-2.5, 9"),
			Row.of("c", "100.2, 1"),
			Row.of("d", "-99.9, 100"),
			Row.of("a", "1.4, 1"),
			Row.of("b", "-2.2, 9"),
			Row.of("c", "100.9, 1")
		);
		BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vec string");
		VectorMaxAbsScaler res = new VectorMaxAbsScaler()
			.setSelectedCol("vec");
		VectorMaxAbsScalerModel model = res.fit(data);
		model.transform(data).print();
	}
}

运行结果

col1 vec
c 1.0,0.01
b -0.024777006937561942,0.09
d -0.9900891972249752,1.0
a 0.09910802775024777,1.0
b -0.02180376610505451,0.09
c 0.9930624380574826,0.01
a 0.013875123885034686,0.01