Java 类名:com.alibaba.alink.pipeline.dataproc.vector.VectorMaxAbsScalerModel
Python 类名:VectorMaxAbsScalerModel
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | false | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", "10.0, 100"], ["b", "-2.5, 9"], ["c", "100.2, 1"], ["d", "-99.9, 100"], ["a", "1.4, 1"], ["b", "-2.2, 9"], ["c", "100.9, 1"] ]) data = BatchOperator.fromDataframe(df, schemaStr="col string, vec string") res = VectorMaxAbsScaler()\ .setSelectedCol("vec") model = res.fit(data) model.transform(data).collectToDataframe()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.pipeline.dataproc.vector.VectorMaxAbsScaler; import com.alibaba.alink.pipeline.dataproc.vector.VectorMaxAbsScalerModel; import org.junit.Test; import java.util.Arrays; import java.util.List; public class VectorMaxAbsScalerModelTest { @Test public void testVectorMaxAbsScalerModel() throws Exception { List <Row> df = Arrays.asList( Row.of("a", "10.0, 100"), Row.of("b", "-2.5, 9"), Row.of("c", "100.2, 1"), Row.of("d", "-99.9, 100"), Row.of("a", "1.4, 1"), Row.of("b", "-2.2, 9"), Row.of("c", "100.9, 1") ); BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vec string"); VectorMaxAbsScaler res = new VectorMaxAbsScaler() .setSelectedCol("vec"); VectorMaxAbsScalerModel model = res.fit(data); model.transform(data).print(); } }
col1 | vec |
---|---|
c | 1.0,0.01 |
b | -0.024777006937561942,0.09 |
d | -0.9900891972249752,1.0 |
a | 0.09910802775024777,1.0 |
b | -0.02180376610505451,0.09 |
c | 0.9930624380574826,0.01 |
a | 0.013875123885034686,0.01 |