Java 类名:com.alibaba.alink.pipeline.dataproc.vector.VectorNormalizer
Python 类名:VectorNormalizer
对 Vector 进行正则化操作。
指定参数范数的阶,例如p = 2, 对于向量<x1, x2, x3>,计算向量的平方和再开二次方记为norm,最终计算结果为<x1/norm, x2/norm, x3/norm>
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | 
|---|---|---|---|---|---|---|
| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | ||
| outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
| p | 范数的阶 | 范数的阶,默认2 | Double | 2.0 | ||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | 
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
    ["1:3 2:4 4:7", 1],
    ["0:3 5:5", 3],
    ["2:4 4:5", 4]
])
data = BatchOperator.fromDataframe(df, schemaStr="vec string, id bigint")
VectorNormalizer().setSelectedCol("vec").setOutputCol("vec_norm").transform(data).collectToDataframe()
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.pipeline.dataproc.vector.VectorNormalizer;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class VectorNormalizerTest {
	@Test
	public void testVectorNormalizer() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of("1:3 2:4 4:7", 1),
			Row.of("0:3 5:5", 3),
			Row.of("2:4 4:5", 4)
		);
		BatchOperator <?> data = new MemSourceBatchOp(df, "vec string, id int");
		new VectorNormalizer().setSelectedCol("vec").setOutputCol("vec_norm").transform(data).print();
	}
}
| vec | id | vec_norm | 
|---|---|---|
| 1:3,2:4,4:7 | 1 | 1:0.34874291623145787 2:0.46499055497527714 4:0.813733471206735 | 
| 0:3,5:5 | 3 | 0:0.5144957554275265 5:0.8574929257125441 | 
| 2:4,4:5 | 4 | 2:0.6246950475544243 4:0.7808688094430304 |