该文档涉及的组件

向量标准化模型 (VectorStandardScalerModel)

Java 类名:com.alibaba.alink.pipeline.dataproc.vector.VectorStandardScalerModel

Python 类名:VectorStandardScalerModel

功能介绍

  • Vector标准化是对Vector数据进行按正态化处理的组件
  • 该组件为Vector标准化模型,可用于对数据做标准化处理

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
modelFilePath 模型的文件路径 模型的文件路径 String null
outputCol 输出结果列 输出结果列列名,可选,默认null String null
overwriteSink 是否覆写已有数据 是否覆写已有数据 Boolean false
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1
modelStreamFilePath 模型流的文件路径 模型流的文件路径 String null
modelStreamScanInterval 扫描模型路径的时间间隔 描模型路径的时间间隔,单位秒 Integer 10
modelStreamStartTime 模型流的起始时间 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) String null

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
    ["a", "10.0, 100"],
    ["b", "-2.5, 9"],
    ["c", "100.2, 1"],
    ["d", "-99.9, 100"],
    ["a", "1.4, 1"],
    ["b", "-2.2, 9"],
    ["c", "100.9, 1"]
])
data = BatchOperator.fromDataframe(df, schemaStr="col string, vector string")
model = VectorStandardScaler().setSelectedCol("vector").fit(data)
model.transform(data).collectToDataframe()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.pipeline.dataproc.vector.VectorStandardScaler;
import com.alibaba.alink.pipeline.dataproc.vector.VectorStandardScalerModel;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class VectorStandardScalerModelTest {
	@Test
	public void testVectorStandardScalerModel() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of("a", "10.0, 100"),
			Row.of("b", "-2.5, 9"),
			Row.of("c", "100.2, 1"),
			Row.of("d", "-99.9, 100"),
			Row.of("a", "1.4, 1"),
			Row.of("b", "-2.2, 9"),
			Row.of("c", "100.9, 1")
		);
		BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vector string");
		VectorStandardScalerModel model = new VectorStandardScaler().setSelectedCol("vector").fit(data);
		model.transform(data).print();
	}
}

运行结果

col1 vec
a -0.07835182408093559,1.4595814453461897
c 1.2269606224811418,-0.6520885789229323
b -0.2549018445693762,-0.4814485769617911
a -0.20280511721213143,-0.6520885789229323
c 1.237090541689495,-0.6520885789229323
b -0.25924323851581327,-0.4814485769617911
d -1.6687491397923802,1.4595814453461897