Java 类名:com.alibaba.alink.pipeline.dataproc.vector.VectorStandardScalerModel
Python 类名:VectorStandardScalerModel
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | false | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", "10.0, 100"], ["b", "-2.5, 9"], ["c", "100.2, 1"], ["d", "-99.9, 100"], ["a", "1.4, 1"], ["b", "-2.2, 9"], ["c", "100.9, 1"] ]) data = BatchOperator.fromDataframe(df, schemaStr="col string, vector string") model = VectorStandardScaler().setSelectedCol("vector").fit(data) model.transform(data).collectToDataframe()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.pipeline.dataproc.vector.VectorStandardScaler; import com.alibaba.alink.pipeline.dataproc.vector.VectorStandardScalerModel; import org.junit.Test; import java.util.Arrays; import java.util.List; public class VectorStandardScalerModelTest { @Test public void testVectorStandardScalerModel() throws Exception { List <Row> df = Arrays.asList( Row.of("a", "10.0, 100"), Row.of("b", "-2.5, 9"), Row.of("c", "100.2, 1"), Row.of("d", "-99.9, 100"), Row.of("a", "1.4, 1"), Row.of("b", "-2.2, 9"), Row.of("c", "100.9, 1") ); BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vector string"); VectorStandardScalerModel model = new VectorStandardScaler().setSelectedCol("vector").fit(data); model.transform(data).print(); } }
col1 | vec |
---|---|
a | -0.07835182408093559,1.4595814453461897 |
c | 1.2269606224811418,-0.6520885789229323 |
b | -0.2549018445693762,-0.4814485769617911 |
a | -0.20280511721213143,-0.6520885789229323 |
c | 1.237090541689495,-0.6520885789229323 |
b | -0.25924323851581327,-0.4814485769617911 |
d | -1.6687491397923802,1.4595814453461897 |