该文档涉及的组件

向量归一化模型 (VectorMinMaxScalerModel)

Java 类名:com.alibaba.alink.pipeline.dataproc.vector.VectorMinMaxScalerModel

Python 类名:VectorMinMaxScalerModel

功能介绍

  • vector归一化是对vector数据进行归一的组件, 将数据归一到min和max之间。
  • 计算公式为x_scaled = (x - eMin) / (eMax - eMin) * (maxV - minV) + minV 其中maxV和minV为用户设定的,默认值为1和0
  • 该组件提供预测功能,对输入的数据进行归一化处理

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
modelFilePath 模型的文件路径 模型的文件路径 String null
outputCol 输出结果列 输出结果列列名,可选,默认null String null
overwriteSink 是否覆写已有数据 是否覆写已有数据 Boolean false
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1
modelStreamFilePath 模型流的文件路径 模型流的文件路径 String null
modelStreamScanInterval 扫描模型路径的时间间隔 描模型路径的时间间隔,单位秒 Integer 10
modelStreamStartTime 模型流的起始时间 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) String null

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
    ["a", "10.0, 100"],
    ["b", "-2.5, 9"],
    ["c", "100.2, 1"],
    ["d", "-99.9, 100"],
    ["a", "1.4, 1"],
    ["b", "-2.2, 9"],
    ["c", "100.9, 1"]
])
data = BatchOperator.fromDataframe(df, schemaStr="col string, vec string")
res = VectorMinMaxScaler()\
           .setSelectedCol("vec")
model = res.fit(data)
model.transform(data).collectToDataframe()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.pipeline.dataproc.vector.VectorMinMaxScaler;
import com.alibaba.alink.pipeline.dataproc.vector.VectorMinMaxScalerModel;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class VectorMinMaxScalerModelTest {
	@Test
	public void testVectorMinMaxScalerModel() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of("a", "10.0, 100"),
			Row.of("b", "-2.5, 9"),
			Row.of("c", "100.2, 1"),
			Row.of("d", "-99.9, 100"),
			Row.of("a", "1.4, 1"),
			Row.of("b", "-2.2, 9"),
			Row.of("c", "100.9, 1")
		);
		BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vec string");
		VectorMinMaxScaler res = new VectorMinMaxScaler()
			.setSelectedCol("vec");
		VectorMinMaxScalerModel model = res.fit(data);
		model.transform(data).print();
	}
}

运行结果

col1 vec
a 0.5473107569721115,1.0
b 0.4850597609561753,0.08080808080808081
c 0.9965139442231076,0.0
d 0.0,1.0
a 0.5044820717131474,0.0
b 0.4865537848605578,0.08080808080808081
c 1.0,0.0