Java 类名:com.alibaba.alink.operator.batch.dataproc.vector.VectorMaxAbsScalerTrainBatchOp
Python 类名:VectorMaxAbsScalerTrainBatchOp
vector绝对值最大标准化是对vector数据按照数值最大绝对值进行标准化的组件, 将数据归一到-1和1之间。输入的向量维度可以不相同。
计算公式为 value / max( | value | )
该组件生成Vector绝对值最大标准化的模型
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", "10.0, 100"], ["b", "-2.5, 9"], ["c", "100.2, 1"], ["d", "-99.9, 100"], ["a", "1.4, 1"], ["b", "-2.2, 9"], ["c", "100.9, 1"] ]) data = BatchOperator.fromDataframe(df, schemaStr="col string, vec string") trainOp = VectorMaxAbsScalerTrainBatchOp()\ .setSelectedCol("vec") model = trainOp.linkFrom(data) batchPredictOp = VectorMaxAbsScalerPredictBatchOp() batchPredictOp.linkFrom(model, data).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.vector.VectorMaxAbsScalerPredictBatchOp; import com.alibaba.alink.operator.batch.dataproc.vector.VectorMaxAbsScalerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class VectorMaxAbsScalerTrainBatchOpTest { @Test public void testVectorMaxAbsScalerTrainBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("a", "10.0, 100"), Row.of("b", "-2.5, 9"), Row.of("c", "100.2, 1"), Row.of("d", "-99.9, 100"), Row.of("a", "1.4, 1"), Row.of("b", "-2.2, 9"), Row.of("c", "100.9, 1") ); BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vec string"); BatchOperator <?> trainOp = new VectorMaxAbsScalerTrainBatchOp() .setSelectedCol("vec"); BatchOperator <?> model = trainOp.linkFrom(data); BatchOperator <?> batchPredictOp = new VectorMaxAbsScalerPredictBatchOp(); batchPredictOp.linkFrom(model, data).print(); } }
col | vec |
---|---|
a | 0.09910802775024777 1.0 |
b | -0.024777006937561942 0.09 |
c | 0.9930624380574826 0.01 |
d | -0.9900891972249752 1.0 |
a | 0.013875123885034686 0.01 |
b | -0.02180376610505451 0.09 |
c | 1.0 0.01 |