向量归一化预测 (VectorMinMaxScalerPredictBatchOp)

Java 类名:com.alibaba.alink.operator.batch.dataproc.vector.VectorMinMaxScalerPredictBatchOp

Python 类名:VectorMinMaxScalerPredictBatchOp

功能介绍

vector归一化是对vector数据进行归一化处理的组件, 将数据归一到minValue和maxValue之间,value最终结果为 (value - min) / (max - min) * (maxValue - minValue) + minValue,最终结果的范围为[minValue, maxValue]。

minValue和maxValue由用户指定,默认为0和1。输入的向量维度可以不相同。

该组件为预测组件,加载模型后就可以处理数据

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
modelFilePath 模型的文件路径 模型的文件路径 String null
outputCol 输出结果列 输出结果列列名,可选,默认null String null
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
    ["a", "10.0, 100"],
    ["b", "-2.5, 9"],
    ["c", "100.2, 1"],
    ["d", "-99.9, 100"],
    ["a", "1.4, 1"],
    ["b", "-2.2, 9"],
    ["c", "100.9, 1"]
])

data = BatchOperator.fromDataframe(df, schemaStr="col string, vec string")

trainOp = VectorMinMaxScalerTrainBatchOp()\
           .setSelectedCol("vec")
model = trainOp.linkFrom(data) 

batchPredictOp = VectorMinMaxScalerPredictBatchOp()
batchPredictOp.linkFrom(model, data).print()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.vector.VectorMinMaxScalerPredictBatchOp;
import com.alibaba.alink.operator.batch.dataproc.vector.VectorMinMaxScalerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class VectorMinMaxScalerPredictBatchOpTest {
	@Test
	public void testVectorMinMaxScalerPredictBatchOp() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of("a", "10.0, 100"),
			Row.of("b", "-2.5, 9"),
			Row.of("c", "100.2, 1"),
			Row.of("d", "-99.9, 100"),
			Row.of("a", "1.4, 1"),
			Row.of("b", "-2.2, 9"),
			Row.of("c", "100.9, 1")
		);
		BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vec string");
		BatchOperator <?> trainOp = new VectorMinMaxScalerTrainBatchOp()
			.setSelectedCol("vec");
		BatchOperator <?> model = trainOp.linkFrom(data);
		BatchOperator <?> batchPredictOp = new VectorMinMaxScalerPredictBatchOp();
		batchPredictOp.linkFrom(model, data).print();
	}
}

运行结果

col vec
a 0.5473107569721115 1.0
b 0.4850597609561753 0.08080808080808081
c 0.9965139442231076 0.0
d 0.0 1.0
a 0.5044820717131474 0.0
b 0.4865537848605578 0.08080808080808081
c 1.0 0.0