向量标准化训练 (VectorStandardScalerTrainBatchOp)

Java 类名:com.alibaba.alink.operator.batch.dataproc.vector.VectorStandardScalerTrainBatchOp

Python 类名:VectorStandardScalerTrainBatchOp

功能介绍

标准化是对向量数据进行按正态化处理的组件

VectorStandardScalerTrainBatchOp 计算向量的每一列的均值和方差,组件可以指定默认均值为0,标准差为1。
生成向量标准化的模型,在 VectorStandardScalerPredictBatchOp 中加载,对数据做标准化处理。

输入的向量可以同时包含稀疏向量和稠密向量,向量维度也可以不相同。输入稠密向量维度不够时,没有的维度默认为0。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
selectedCol 选中的列名 计算列对应的列名 String 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR]
withMean 是否使用均值 是否使用均值,默认使用 Boolean true
withStd 是否使用标准差 是否使用标准差,默认使用 Boolean true

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
    ["a", "10.0, 100"],
    ["b", "-2.5, 9"],
    ["c", "100.2, 1"],
    ["d", "-99.9, 100"],
    ["a", "1.4, 1"],
    ["b", "-2.2, 9"],
    ["c", "100.9, 1"]
])

data = BatchOperator.fromDataframe(df, schemaStr="col string, vector string")
trainOp = VectorStandardScalerTrainBatchOp().setSelectedCol("vector")
model = trainOp.linkFrom(data)
VectorStandardScalerPredictBatchOp().linkFrom(model, data).collectToDataframe()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.vector.VectorStandardScalerPredictBatchOp;
import com.alibaba.alink.operator.batch.dataproc.vector.VectorStandardScalerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class VectorStandardScalerTrainBatchOpTest {
	@Test
	public void testVectorStandardScalerTrainBatchOp() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of("a", "10.0, 100"),
			Row.of("b", "-2.5, 9"),
			Row.of("c", "100.2, 1"),
			Row.of("d", "-99.9, 100"),
			Row.of("a", "1.4, 1"),
			Row.of("b", "-2.2, 9"),
			Row.of("c", "100.9, 1")
		);
		BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vector string");
		BatchOperator <?> trainOp = new VectorStandardScalerTrainBatchOp().setSelectedCol("vector");
		BatchOperator <?> model = trainOp.linkFrom(data);
		new VectorStandardScalerPredictBatchOp().linkFrom(model, data).print();
	}
}

运行结果

col1 vec
a -0.07835182408093559,1.4595814453461897
c 1.2269606224811418,-0.6520885789229323
b -0.2549018445693762,-0.4814485769617911
a -0.20280511721213143,-0.6520885789229323
c 1.237090541689495,-0.6520885789229323
b -0.25924323851581327,-0.4814485769617911
d -1.6687491397923802,1.4595814453461897