Java 类名:com.alibaba.alink.operator.batch.dataproc.vector.VectorSliceBatchOp
Python 类名:VectorSliceBatchOp
取出Vector 中的若干列,组成一个新的Vector,输出到新的一列中。
可同时处理稀疏向量和稠密向量,如果为稠密向量,必须保证向量维度大于要抽取的最大下标。如下面代码中的例子,稠密向量长度必须大于3。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | ||
indices | 需要被提取的索引数组 | 需要被提取的索引数组 | int[] | null | ||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["1:3,2:4,4:7", 1], ["0:3,5:5", 3], ["2:4,4:5", 4] ]) data = BatchOperator.fromDataframe(df, schemaStr="vec string, id bigint") vecSlice = VectorSliceBatchOp().setSelectedCol("vec").setOutputCol("vec_slice").setIndices([1,2,3]) vecSlice.linkFrom(data).collectToDataframe()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.vector.VectorSliceBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class VectorSliceBatchOpTest { @Test public void testVectorSliceBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("1:3,2:4,4:7", 1), Row.of("0:3,5:5", 3), Row.of("2:4,4:5", 4) ); BatchOperator <?> data = new MemSourceBatchOp(df, "vec string, id int"); BatchOperator <?> vecSlice = new VectorSliceBatchOp().setSelectedCol("vec").setOutputCol("vec_slice") .setIndices(new int[] {1, 2, 3}); vecSlice.linkFrom(data).print(); } }
vec | id | vec_slice |
---|---|---|
1:3,2:4,4:7 | 1 | $3$0:3.0 1:4.0 |
0:3,5:5 | 3 | $3$ |
2:4,4:5 | 4 | $3$1:4.0 |