Java 类名:com.alibaba.alink.operator.batch.dataproc.vector.VectorStandardScalerPredictBatchOp
Python 类名:VectorStandardScalerPredictBatchOp
标准化是对向量数据进行按正态化处理的组件
VectorStandardScalerTrainBatchOp 计算向量的每一列的均值和方差,组件可以指定默认均值为0,标准差为1。
生成向量标准化的模型,在 VectorStandardScalerPredictBatchOp 中加载,对数据做标准化处理。
输入的向量可以同时包含稀疏向量和稠密向量,向量维度也可以不相同。输入稠密向量维度不够时,没有的维度默认为0。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", "10.0, 100"], ["b", "-2.5, 9"], ["c", "100.2, 1"], ["d", "-99.9, 100"], ["a", "1.4, 1"], ["b", "-2.2, 9"], ["c", "100.9, 1"] ]) data = BatchOperator.fromDataframe(df, schemaStr="col string, vector string") trainOp = VectorStandardScalerTrainBatchOp().setSelectedCol("vector") model = trainOp.linkFrom(data) VectorStandardScalerPredictBatchOp().linkFrom(model, data).collectToDataframe()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.vector.VectorStandardScalerPredictBatchOp; import com.alibaba.alink.operator.batch.dataproc.vector.VectorStandardScalerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class VectorStandardScalerPredictBatchOpTest { @Test public void testVectorStandardScalerPredictBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("a", "10.0, 100"), Row.of("b", "-2.5, 9"), Row.of("c", "100.2, 1"), Row.of("d", "-99.9, 100"), Row.of("a", "1.4, 1"), Row.of("b", "-2.2, 9"), Row.of("c", "100.9, 1") ); BatchOperator <?> data = new MemSourceBatchOp(df, "col string, vector string"); BatchOperator <?> trainOp = new VectorStandardScalerTrainBatchOp().setSelectedCol("vector"); BatchOperator <?> model = trainOp.linkFrom(data); new VectorStandardScalerPredictBatchOp().linkFrom(model, data).print(); } }
col1 | vec |
---|---|
a | -0.07835182408093559,1.4595814453461897 |
c | 1.2269606224811418,-0.6520885789229323 |
b | -0.2549018445693762,-0.4814485769617911 |
a | -0.20280511721213143,-0.6520885789229323 |
c | 1.237090541689495,-0.6520885789229323 |
b | -0.25924323851581327,-0.4814485769617911 |
d | -1.6687491397923802,1.4595814453461897 |