Java 类名:com.alibaba.alink.operator.batch.dataproc.vector.VectorNormalizeBatchOp
Python 类名:VectorNormalizeBatchOp
对 Vector 进行正则化操作。
指定参数范数的阶,例如p = 2, 对于向量<x1, x2, x3>,计算向量的平方和再开二次方记为norm,最终计算结果为<x1/norm, x2/norm, x3/norm>
通过 setOutputCol,指定新生成的列名。如果不指定,默认替代输入列。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | |
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
p | 范数的阶 | 范数的阶,默认2 | Double | 2.0 | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["1:3,2:4,4:7", 1], ["0:3,5:5", 3], ["2:4,4:5", 4] ]) data = BatchOperator.fromDataframe(df, schemaStr="vec string, id bigint") VectorNormalizeBatchOp().setSelectedCol("vec").setOutputCol("vec_norm").linkFrom(data).collectToDataframe()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.vector.VectorNormalizeBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class VectorNormalizeBatchOpTest { @Test public void testVectorNormalizeBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("1:3,2:4,4:7", 1), Row.of("0:3,5:5", 3), Row.of("2:4,4:5", 4) ); BatchOperator <?> data = new MemSourceBatchOp(df, "vec string, id int"); new VectorNormalizeBatchOp().setSelectedCol("vec").setOutputCol("vec_norm").linkFrom(data).print(); } }
vec | id | vec_norm |
---|---|---|
1:3,2:4,4:7 | 1 | 1:0.34874291623145787 2:0.46499055497527714 4:0.813733471206735 |
0:3,5:5 | 3 | 0:0.5144957554275265 5:0.8574929257125441 |
2:4,4:5 | 4 | 2:0.6246950475544243 4:0.7808688094430304 |