Alink教程(Python版)

第25.5节 运行PyTorch模型


在本章的第2、3节介绍了使用Alink提供的深度学习组件KerasSequentialClassifier和KerasSequentialRegressor进行分类和回归模型的训练、预测。

实际应用中,经常需要使用TensorFlow或着PyTorch训练好的模型,对流式数据、批式数据进行预测。Alink提供了相应的流式、批式和Pipeline组件适配TensorFlow或着PyTorch模型。

本节重点介绍与PyTorch模型相关的操作。


25.5.1 生成PyTorch模型


本节所需的PyTorch模型文件mnist_model_pytorch.pt,已经被放到了OSS上,本节后面的实验会直接从网络读取该模型。https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/mnist_model_pytorch.pt

如果读者有兴趣,可以在PyTorch环境,运行下面代码便可生成PyTorch模型,从而被Alink相关组件使用。注意:PyTorch模型执需要打包为".pt"文件,便于Alink相关组件导入模型。建议的打包示例代码在下面代码的最后部分。

import torch
from torchvision import datasets
from torchvision.transforms import ToTensor

train_data = datasets.MNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

train_loader = torch.utils.data.dataloader.DataLoader(dataset=train_data, batch_size=64, shuffle=True)

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Sequential(
            torch.nn.Conv2d(1, 32, 3, 1, 1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2))
        self.conv2 = torch.nn.Sequential(
            torch.nn.Conv2d(32, 64, 3, 1, 1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2)
        )
        self.conv3 = torch.nn.Sequential(
            torch.nn.Conv2d(64, 64, 3, 1, 1),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(2)
        )
        self.dense = torch.nn.Sequential(
            torch.nn.Linear(64 * 3 * 3, 128),
            torch.nn.ReLU(),
            torch.nn.Linear(128, 10)
        )

    def forward(self, x):
        conv1_out = self.conv1(x)
        conv2_out = self.conv2(conv1_out)
        conv3_out = self.conv3(conv2_out)
        res = conv3_out.view(conv3_out.size(0), -1)
        out = self.dense(res)
        return out

model = Net()
print(model)

optimizer = torch.optim.Adam(model.parameters())
loss_func = torch.nn.CrossEntropyLoss()

for epoch in range(5):
    print('epoch {}'.format(epoch + 1))
    train_loss = 0.
    train_acc = 0.
    for batch_x, batch_y in train_loader:
        batch_x, batch_y = torch.autograd.Variable(batch_x), torch.autograd.Variable(batch_y)
        out = model(batch_x)
        loss = loss_func(out, batch_y)
        train_loss += loss.item()
        pred = torch.max(out, 1)[1]
        train_correct = (pred == batch_y).sum()
        train_acc += train_correct.item()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print('Train Loss: {:.6f}, Acc: {:.6f}'.format(train_loss / (len(
        train_data)), train_acc / (len(train_data))))

    
traced = torch.jit.trace(model, (torch.rand(1, 1, 28, 28)))
torch.jit.save(traced, "mnist_model_pytorch.pt")

输出模型及训练信息如下:

Net(
  (conv1): Sequential(
    (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (conv2): Sequential(
    (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (conv3): Sequential(
    (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (dense): Sequential(
    (0): Linear(in_features=576, out_features=128, bias=True)
    (1): ReLU()
    (2): Linear(in_features=128, out_features=10, bias=True)
  )
)
epoch 1
Train Loss: 0.003327, Acc: 0.933000
epoch 2
Train Loss: 0.000876, Acc: 0.982667
epoch 3
Train Loss: 0.000592, Acc: 0.987783
epoch 4
Train Loss: 0.000466, Acc: 0.990467
epoch 5
Train Loss: 0.000403, Acc: 0.991733


25.5.2 批式任务中使用PyTorch模型


使用TorchModelPredictBatchOp组件,可以加载PyTorch模型进行批式预测。关于该组件的详细说明参见Alink文档 https://www.yuque.com/pinshu/alink_doc/torchmodelpredictbatchop .

使用PyTorch模型前,还需要将输入数据列的类型转换为Tensor格式,可以使用VectorToTensorBatchOp组件。具体代码如下所示:

AkSourceBatchOp()\
    .setFilePath(Chap13_DATA_DIR + Chap13_DENSE_TEST_FILE)\
    .link(\
        VectorToTensorBatchOp()\
            .setTensorDataType("float")\
            .setTensorShape([1, 1, 28, 28])\
            .setSelectedCol("vec")\
            .setOutputCol("tensor")\
            .setReservedCols(["label"])
    )\
    .link(\
        TorchModelPredictBatchOp()\
            .setModelPath(
                "https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/mnist_model_pytorch.pt")\
            .setSelectedCols(["tensor"])\
            .setOutputSchemaStr("output_1 FLOAT_TENSOR")
    )\
    .lazyPrint(3)\
    .link(\
        UDFBatchOp()\
            .setFunc(get_max_index)\
            .setSelectedCols(["output_1"])\
            .setOutputCol("pred")
    )\
    .lazyPrint(3)\
    .link(\
        EvalMultiClassBatchOp()\
            .setLabelCol("label")\
            .setPredictionCol("pred")\
            .lazyPrintMetrics()
    )

BatchOperator.execute()

这里用到了一个自定义函数,具体定义如下:

import numpy as np

@udf(input_types=[AlinkDataTypes.TENSOR()], result_type=AlinkDataTypes.INT()) 
def get_max_index(tensor: np.ndarray):
    return tensor.argmax().item()


批式任务的运行结果为:

-------------------------------- Metrics: --------------------------------
Accuracy:0.9903	Macro F1:0.9902	Micro F1:0.9903	Kappa:0.9892	
|Pred\Real|  9|  8|   7|...|   2|   1|  0|
|---------|---|---|----|---|----|----|---|
|        9|992|  1|   4|...|   0|   0|  0|
|        8|  2|965|   1|...|   0|   1|  1|
|        7|  5|  2|1012|...|   2|   0|  1|
|      ...|...|...| ...|...| ...| ...|...|
|        2|  2|  4|   9|...|1030|   3|  2|
|        1|  0|  0|   2|...|   0|1128|  0|
|        0|  0|  2|   0|...|   0|   0|973|

25.5.3 流式任务中使用PyTorch模型


使用TorchModelPredictStreamOp组件,可以加载PyTorch模型进行批式预测。关于该组件的详细说明参见Alink文档 https://www.yuque.com/pinshu/alink_doc/torchmodelpredictstreamop .

使用PyTorch模型前,还需要将输入数据列的类型转换为Tensor格式,可以使用VectorToTensorStreamOp组件。具体代码如下所示:

AkSourceStreamOp()\
    .setFilePath(Chap13_DATA_DIR + Chap13_DENSE_TEST_FILE)\
    .link(\
        VectorToTensorStreamOp()\
            .setTensorDataType("float")\
            .setTensorShape([1, 1, 28, 28])
            .setSelectedCol("vec")\
            .setOutputCol("tensor")\
            .setReservedCols(["label"])
    )\
    .link(\
        TorchModelPredictStreamOp()\
            .setModelPath(
                "https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/mnist_model_pytorch.pt")\
            .setSelectedCols(["tensor"])\
            .setOutputSchemaStr("output_1 FLOAT_TENSOR")
    )\
    .link(\
        UDFStreamOp()\
            .setFunc(get_max_index)\
            .setSelectedCols(["output_1"])\
            .setOutputCol("pred")
    )\
    .sample(0.001)\
    .print()

StreamOperator.execute()


运行结果为:


25.5.4 Pipeline中使用PyTorch模型

学习了如何在批式任务和流式任务中使用PyTorch模型,我们很容易在Pipeline中使用PyTorch模型进行预测,只要将其中的批式/流式组件对应到Pipeline组件即可。具体代码如下:

PipelineModel(\
    VectorToTensor()\
        .setTensorDataType("float")\
        .setTensorShape([1, 1, 28, 28])\
        .setSelectedCol("vec")\
        .setOutputCol("tensor")\
        .setReservedCols(["label"]),
    TorchModelPredictor()\
        .setModelPath(
            "https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/mnist_model_pytorch.pt")\
        .setSelectedCols(["tensor"])\
        .setOutputSchemaStr("output_1 FLOAT_TENSOR")
).save(Chap13_DATA_DIR + PIPELINE_PYTORCH_MODEL, True)
BatchOperator.execute()

PipelineModel\
    .load(Chap13_DATA_DIR + PIPELINE_PYTORCH_MODEL)\
    .transform(\
        AkSourceStreamOp()\
            .setFilePath(Chap13_DATA_DIR + Chap13_DENSE_TEST_FILE)
    )\
    .link(\
        UDFStreamOp()\
            .setFunc(get_max_index)\
            .setSelectedCols(["output_1"])\
            .setOutputCol("pred")
    )\
    .sample(0.001)\
    .print()
StreamOperator.execute()


运行结果为:


25.5.5 LocalPredictor中使用PyTorch模型


除了通过Alink任务使用PyTorch模型,也可以使用LocalPredictor进行嵌入式预测。示例代码如下,首先从数据集中抽取一行数据,输入数据的SchemaStr为“vec string, label int”;然后通过导入上一节保存的Pipeline模型,并设置输入数据的SchemaStr,得到LocalPredictor类型的实例localPredictor;如果不确定预测结果各列的含义,可以打印输出localPredictor的OutputSchema;使用localPredictor的map方法获得预测结果。

source = AkSourceBatchOp().setFilePath(Chap13_DATA_DIR + Chap13_DENSE_TEST_FILE)

print(source.getSchemaStr())

df = source.firstN(1).collectToDataframe()

row = [df.iat[0,0], df.iat[0,1].item()]

localPredictor = LocalPredictor(Chap13_DATA_DIR + PIPELINE_PYTORCH_MODEL, "vec string, label int")

print(localPredictor.getOutputSchemaStr())

r = localPredictor.map(row)
print(str(r[0]) + " | " + str(r[2]))

运行结果为:

vec VARCHAR, label INT
label INT, tensor ANY<com.alibaba.alink.common.linalg.tensor.FloatTensor>, output_1 ANY<com.alibaba.alink.common.linalg.tensor.FloatTensor>
2 | FloatTensor(1,10)
[[500.5041 499.77554 4562.968 ... -759.00934 -1826.2468 -2071.0444]]