本章包括下面各节:
17.1 聚类评估指标
17.1.1 基本评估指标
17.1.2 基于标签值的评估指标
17.2 K-Means聚类算法
17.2.1 算法简介
17.2.2 K-Means实例
17.3 高斯混合模型算法
17.3.1 算法介绍
17.3.2 GMM实例
17.4 二分K-Means聚类算法
17.5 基于经纬度的聚类
详细内容请阅读纸质书《Alink权威指南:基于Flink的机器学习实例入门(Python)》,这里为本章对应的示例代码。
from pyalink.alink import *
useLocalEnv(1)
from utils import *
import os
import pandas as pd
pd.set_option('display.max_rows', 200)
DATA_DIR = ROOT_DIR + "iris" + os.sep
ORIGIN_FILE = "iris.data";
VECTOR_FILE = "iris_vec.ak";
SCHEMA_STRING = "sepal_length double, sepal_width double, petal_length double, petal_width double, category string";
FEATURE_COL_NAMES = ["sepal_length", "sepal_width", "petal_length", "petal_width"]
LABEL_COL_NAME = "category";
VECTOR_COL_NAME = "vec";
PREDICTION_COL_NAME = "cluster_id";
#c_1_2
if not(os.path.exists(DATA_DIR + VECTOR_FILE)) :
CsvSourceBatchOp()\
.setFilePath(DATA_DIR + ORIGIN_FILE)\
.setSchemaStr(SCHEMA_STRING)\
.link(
VectorAssemblerBatchOp()\
.setSelectedCols(FEATURE_COL_NAMES)\
.setOutputCol(VECTOR_COL_NAME)\
.setReservedCols(LABEL_COL_NAME)
)\
.link(
AkSinkBatchOp().setFilePath(DATA_DIR + VECTOR_FILE)
);
BatchOperator.execute()
source = AkSourceBatchOp().setFilePath(DATA_DIR + VECTOR_FILE);
source.lazyPrint(5);
kmeans_model = KMeansTrainBatchOp()\
.setK(2)\
.setVectorCol(VECTOR_COL_NAME);
kmeans_pred = KMeansPredictBatchOp().setPredictionCol(PREDICTION_COL_NAME);
source.link(kmeans_model);
kmeans_pred.linkFrom(kmeans_model, source);
kmeans_model.lazyPrintModelInfo();
kmeans_pred.lazyPrint(5);
kmeans_pred\
.link(
EvalClusterBatchOp()\
.setVectorCol(VECTOR_COL_NAME)\
.setLabelCol(LABEL_COL_NAME)\
.setPredictionCol(PREDICTION_COL_NAME)\
.lazyPrintMetrics("KMeans EUCLIDEAN")
);
kmeans_pred\
.orderBy(PREDICTION_COL_NAME + ", " + LABEL_COL_NAME, 200)\
.lazyPrint(-1, "all data");
BatchOperator.execute()
KMeans()\
.setK(2)\
.setDistanceType('COSINE')\
.setVectorCol(VECTOR_COL_NAME)\
.setPredictionCol(PREDICTION_COL_NAME)\
.enableLazyPrintModelInfo()\
.fit(source)\
.transform(source)\
.link(
EvalClusterBatchOp()\
.setVectorCol(VECTOR_COL_NAME)\
.setPredictionCol(PREDICTION_COL_NAME)\
.setLabelCol(LABEL_COL_NAME)\
.lazyPrintMetrics("KMeans COSINE")
);
BatchOperator.execute()
#c_2_2
source = AkSourceBatchOp().setFilePath(DATA_DIR + VECTOR_FILE);
GaussianMixture()\
.setK(2)\
.setVectorCol(VECTOR_COL_NAME)\
.setPredictionCol(PREDICTION_COL_NAME)\
.enableLazyPrintModelInfo()\
.fit(source)\
.transform(source)\
.link(
EvalClusterBatchOp()\
.setVectorCol(VECTOR_COL_NAME)\
.setPredictionCol(PREDICTION_COL_NAME)\
.setLabelCol(LABEL_COL_NAME)\
.lazyPrintMetrics("GaussianMixture 2")
);
BatchOperator.execute()
#c_3
source = AkSourceBatchOp().setFilePath(DATA_DIR + VECTOR_FILE);
BisectingKMeans()\
.setK(3)\
.setVectorCol(VECTOR_COL_NAME)\
.setPredictionCol(PREDICTION_COL_NAME)\
.enableLazyPrintModelInfo("BiSecting KMeans EUCLIDEAN")\
.fit(source)\
.transform(source)\
.link(
EvalClusterBatchOp()\
.setVectorCol(VECTOR_COL_NAME)\
.setPredictionCol(PREDICTION_COL_NAME)\
.setLabelCol(LABEL_COL_NAME)\
.lazyPrintMetrics("Bisecting KMeans EUCLIDEAN")
);
BatchOperator.execute();
BisectingKMeans()\
.setDistanceType('COSINE')\
.setK(3)\
.setVectorCol(VECTOR_COL_NAME)\
.setPredictionCol(PREDICTION_COL_NAME)\
.enableLazyPrintModelInfo("BiSecting KMeans COSINE")\
.fit(source)\
.transform(source)\
.link(
EvalClusterBatchOp()\
.setDistanceType("COSINE")\
.setVectorCol(VECTOR_COL_NAME)\
.setPredictionCol(PREDICTION_COL_NAME)\
.setLabelCol(LABEL_COL_NAME)\
.lazyPrintMetrics("Bisecting KMeans COSINE")
);
BatchOperator.execute();
#c_4
df = pd.DataFrame(
[
["Alabama", "South", "East South Central", -86.7509, 32.5901],
["Alaska", "West", "Pacific", -127.25, 49.25],
["Arizona", "West", "Mountain", -111.625, 34.2192],
["Arkansas", "South", "West South Central", -92.2992, 34.7336],
["California", "West", "Pacific", -119.773, 36.5341],
["Colorado", "West", "Mountain", -105.513, 38.6777],
["Connecticut", "Northeast", "New England", -72.3573, 41.5928],
["Delaware", "South", "South Atlantic", -74.9841, 38.6777],
["Florida", "South", "South Atlantic", -81.685, 27.8744],
["Georgia", "South", "South Atlantic", -83.3736, 32.3329],
["Hawaii", "West", "Pacific", -126.25, 31.75],
["Idaho", "West", "Mountain", -113.93, 43.5648],
["Illinois", "North Central", "East North Central", -89.3776, 40.0495],
["Indiana", "North Central", "East North Central", -86.0808, 40.0495],
["Iowa", "North Central", "West North Central", -93.3714, 41.9358],
["Kansas", "North Central", "West North Central", -98.1156, 38.4204],
["Kentucky", "South", "East South Central", -84.7674, 37.3915],
["Louisiana", "South", "West South Central", -92.2724, 30.6181],
["Maine", "Northeast", "New England", -68.9801, 45.6226],
["Maryland", "South", "South Atlantic", -76.6459, 39.2778],
["Massachusetts", "Northeast", "New England", -71.58, 42.3645],
["Michigan", "North Central", "East North Central", -84.687, 43.1361],
["Minnesota", "North Central", "West North Central", -94.6043, 46.3943],
["Mississippi", "South", "East South Central", -89.8065, 32.6758],
["Missouri", "North Central", "West North Central", -92.5137, 38.3347],
["Montana", "West", "Mountain", -109.32, 46.823],
["Nebraska", "North Central", "West North Central", -99.5898, 41.3356],
["Nevada", "West", "Mountain", -116.851, 39.1063],
["New Hampshire", "Northeast", "New England", -71.3924, 43.3934],
["New Jersey", "Northeast", "Middle Atlantic", -74.2336, 39.9637],
["New Mexico", "West", "Mountain", -105.942, 34.4764],
["New York", "Northeast", "Middle Atlantic", -75.1449, 43.1361],
["North Carolina", "South", "South Atlantic", -78.4686, 35.4195],
["North Dakota", "North Central", "West North Central", -100.099, 47.2517],
["Ohio", "North Central", "East North Central", -82.5963, 40.221],
["Oklahoma", "South", "West South Central", -97.1239, 35.5053],
["Oregon", "West", "Pacific", -120.068, 43.9078],
["Pennsylvania", "Northeast", "Middle Atlantic", -77.45, 40.9069],
["Rhode Island", "Northeast", "New England", -71.1244, 41.5928],
["South Carolina", "South", "South Atlantic", -80.5056, 33.619],
["South Dakota", "North Central", "West North Central", -99.7238, 44.3365],
["Tennessee", "South", "East South Central", -86.456, 35.6767],
["Texas", "South", "West South Central", -98.7857, 31.3897],
["Utah", "West", "Mountain", -111.33, 39.1063],
["Vermont", "Northeast", "New England", -72.545, 44.2508],
["Virginia", "South", "South Atlantic", -78.2005, 37.563],
["Washington", "West", "Pacific", -119.746, 47.4231],
["West Virginia", "South", "South Atlantic", -80.6665, 38.4204],
["Wisconsin", "North Central", "East North Central", -89.9941, 44.5937],
["Wyoming", "West", "Mountain", -107.256, 43.0504]
]
)
schema_str = "State string, Region string, Division string, longitude double, latitude double"
source = BatchOperator.fromDataframe(df, schema_str)
source.lazyPrint(5);
source.select("Region").distinct().lazyPrint(-1);
source.select("Division").distinct().lazyPrint(-1);
source\
.groupBy("Region, Division", "Region, Division, COUNT(*) AS numStates")\
.orderBy("Region, Division", 100)\
.lazyPrint(-1);
for nClusters in [2, 4] :
pred = GeoKMeans()\
.setLongitudeCol("longitude")\
.setLatitudeCol("latitude")\
.setPredictionCol(PREDICTION_COL_NAME)\
.setK(nClusters)\
.fit(source)\
.transform(source);
pred.link(
EvalClusterBatchOp()\
.setPredictionCol(PREDICTION_COL_NAME)\
.setLabelCol("Region")\
.lazyPrintMetrics(str(nClusters) + " with Region")
);
pred.link(
EvalClusterBatchOp()\
.setPredictionCol(PREDICTION_COL_NAME)\
.setLabelCol("Division")\
.lazyPrintMetrics(str(nClusters) + " with Division")
);
BatchOperator.execute()
```python
```