与25.2节的想法类似,我们先将每个像素看作一个特征,用常用的逻辑回归模型做一下尝试,看看对于彩色图像的分类效果;随后,再实验图像分类问题的经典模型:卷积神经网络(CNN)。
尝试逻辑回归模型,将每个像素看作一个特征,使用TensorToVector组件,将张量格式的图片数据转换为向量,然后使用LogisticRegression进行训练,并计算模型指标。
def lr(train_set, test_set) : Pipeline()\ .add(\ TensorToVector()\ .setSelectedCol("tensor")\ .setReservedCols(["label"])\ )\ .add(\ LogisticRegression()\ .setVectorCol("tensor")\ .setLabelCol("label")\ .setPredictionCol(PREDICTION_COL)\ .setPredictionDetailCol(PREDICTION_DETAIL_COL)\ )\ .fit(train_set)\ .transform(test_set)\ .link(\ EvalBinaryClassBatchOp()\ .setLabelCol("label")\ .setPredictionDetailCol(PREDICTION_DETAIL_COL)\ .lazyPrintMetrics()\ ) BatchOperator.execute()
得到LR模型的评估指标如下,精确度为0.6164。
-------------------------------- Metrics: -------------------------------- Auc:0.6496 Accuracy:0.6164 Precision:0.6264 Recall:0.6022 F1:0.6141 LogLoss:0.6812 |Pred\Real|dog|cat| |---------|---|---| | dog|763|455| | cat|504|778|
定义CNN模型结构如下:
_________________________________________________________________ Layer (type) Output Shape Param # ================================================================= tensor (InputLayer) [(None, 32, 32, 3)] 0 _________________________________________________________________ conv2d (Conv2D) (None, 30, 30, 32) 896 _________________________________________________________________ max_pooling2d (MaxPooling2D) (None, 15, 15, 32) 0 _________________________________________________________________ conv2d_1 (Conv2D) (None, 13, 13, 64) 18496 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 6, 6, 64) 0 _________________________________________________________________ flatten (Flatten) (None, 2304) 0 _________________________________________________________________ dropout (Dropout) (None, 2304) 0 _________________________________________________________________ logits (Dense) (None, 1) 2305 ================================================================= Total params: 21,697 Trainable params: 21,697 Non-trainable params: 0 _________________________________________________________________
使用KerasSequentialClassifierTrainBatchOp进行模型训练,并将模型保存到文件MODEL_CNN_FILE,相应代码如下
if not(os.path.exists(DATA_DIR + MODEL_CNN_FILE)): train_set\ .link( KerasSequentialClassifierTrainBatchOp()\ .setTensorCol("tensor")\ .setLabelCol("label")\ .setLayers([ "Conv2D(32, kernel_size=(3, 3), activation='relu')", "MaxPooling2D(pool_size=(2, 2))", "Conv2D(64, kernel_size=(3, 3), activation='relu')", "MaxPooling2D(pool_size=(2, 2))", "Flatten()", "Dropout(0.5)" ])\ .setNumEpochs(50)\ .setSaveCheckpointsEpochs(2.0)\ .setValidationSplit(0.1)\ .setSaveBestOnly(True)\ .setBestMetric("auc")\ )\ .link( AkSinkBatchOp()\ .setFilePath(DATA_DIR + MODEL_CNN_FILE)\ ) BatchOperator.execute()
再使用导入训练好的模型,对测试集进行预测,并做二分类模型评估。
KerasSequentialClassifierPredictBatchOp()\ .setPredictionCol(PREDICTION_COL)\ .setPredictionDetailCol(PREDICTION_DETAIL_COL)\ .setReservedCols(["relative_path", "label"])\ .linkFrom( AkSourceBatchOp().setFilePath(DATA_DIR + MODEL_CNN_FILE), test_set )\ .lazyPrint(10)\ .lazyPrintStatistics()\ .link( EvalBinaryClassBatchOp()\ .setLabelCol("label")\ .setPredictionDetailCol(PREDICTION_DETAIL_COL)\ .lazyPrintMetrics() ) BatchOperator.execute();
模型评估结果如下,明显优于逻辑回归模型。由于本实验考虑训练时间不宜太长,训练次数设定为50次,如果读者想要获得更好的模型效果,可以调整训练参数。另外,下一节介绍使用预训练模型的方法,可以帮助我们在较短的时间内拿到更好的效果。
Summary: | colName|count|missing|sum|mean|variance|min|max| |-------------|-----|-------|---|----|--------|---|---| |relative_path| 2500| 0|NaN| NaN| NaN|NaN|NaN| | label| 2500| 0|NaN| NaN| NaN|NaN|NaN| | pred| 2500| 0|NaN| NaN| NaN|NaN|NaN| | pred_info| 2500| 0|NaN| NaN| NaN|NaN|NaN| -------------------------------- Metrics: -------------------------------- Auc:0.951 Accuracy:0.8672 Precision:0.9057 Recall:0.812 F1:0.8563 LogLoss:0.3023 |Pred\Real|dog| cat| |---------|---|----| | dog|989| 103| | cat|229|1179|