本章包括下面各节:
20.1 示例一:尝试正则系数
20.2 示例二:搜索GBDT超参数
20.3 示例三:最佳聚类个数
详细内容请阅读纸质书《Alink权威指南:基于Flink的机器学习实例入门(Java)》,这里为本章对应的示例代码。
package com.alibaba.alink;
import com.alibaba.alink.common.AlinkGlobalConfiguration;
import com.alibaba.alink.common.utils.Stopwatch;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.evaluation.EvalBinaryClassBatchOp;
import com.alibaba.alink.operator.batch.evaluation.EvalClusterBatchOp;
import com.alibaba.alink.operator.batch.source.AkSourceBatchOp;
import com.alibaba.alink.operator.common.evaluation.TuningBinaryClassMetric;
import com.alibaba.alink.operator.common.evaluation.TuningClusterMetric;
import com.alibaba.alink.params.shared.clustering.HasKMeansDistanceType.DistanceType;
import com.alibaba.alink.pipeline.Pipeline;
import com.alibaba.alink.pipeline.classification.GbdtClassifier;
import com.alibaba.alink.pipeline.classification.LogisticRegression;
import com.alibaba.alink.pipeline.clustering.KMeans;
import com.alibaba.alink.pipeline.tuning.BinaryClassificationTuningEvaluator;
import com.alibaba.alink.pipeline.tuning.ClusterTuningEvaluator;
import com.alibaba.alink.pipeline.tuning.GridSearchCV;
import com.alibaba.alink.pipeline.tuning.GridSearchCVModel;
import com.alibaba.alink.pipeline.tuning.ParamDist;
import com.alibaba.alink.pipeline.tuning.ParamGrid;
import com.alibaba.alink.pipeline.tuning.RandomSearchTVSplit;
import com.alibaba.alink.pipeline.tuning.RandomSearchTVSplitModel;
import com.alibaba.alink.pipeline.tuning.ValueDist;
import org.apache.commons.lang3.ArrayUtils;
public class Chap20 {
public static void main(String[] args) throws Exception {
BatchOperator.setParallelism(1);
c_1();
c_2();
c_3();
}
static void c_1() throws Exception {
BatchOperator <?> train_data =
new AkSourceBatchOp()
.setFilePath(Chap10.DATA_DIR + Chap10.TRAIN_FILE)
.select(Chap10.CLAUSE_CREATE_FEATURES);
BatchOperator <?> test_data =
new AkSourceBatchOp()
.setFilePath(Chap10.DATA_DIR + Chap10.TEST_FILE)
.select(Chap10.CLAUSE_CREATE_FEATURES);
final String[] new_features =
ArrayUtils.removeElement(train_data.getColNames(), Chap10.LABEL_COL_NAME);
LogisticRegression lr = new LogisticRegression()
.setFeatureCols(new_features)
.setLabelCol(Chap10.LABEL_COL_NAME)
.setPredictionCol(Chap10.PREDICTION_COL_NAME)
.setPredictionDetailCol(Chap10.PRED_DETAIL_COL_NAME);
Pipeline pipeline = new Pipeline().add(lr);
GridSearchCV gridSearch = new GridSearchCV()
.setNumFolds(5)
.setEstimator(pipeline)
.setParamGrid(
new ParamGrid()
.addGrid(lr, LogisticRegression.L_1,
new Double[] {0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0})
)
.setTuningEvaluator(
new BinaryClassificationTuningEvaluator()
.setLabelCol(Chap10.LABEL_COL_NAME)
.setPredictionDetailCol(Chap10.PRED_DETAIL_COL_NAME)
.setTuningBinaryClassMetric(TuningBinaryClassMetric.AUC)
)
.enableLazyPrintTrainInfo();
GridSearchCVModel bestModel = gridSearch.fit(train_data);
bestModel.transform(test_data)
.link(
new EvalBinaryClassBatchOp()
.setPositiveLabelValueString("2")
.setLabelCol(Chap10.LABEL_COL_NAME)
.setPredictionDetailCol(Chap10.PRED_DETAIL_COL_NAME)
.lazyPrintMetrics("GridSearchCV")
);
BatchOperator.execute();
}
static void c_2() throws Exception {
Stopwatch sw = new Stopwatch();
sw.start();
AlinkGlobalConfiguration.setPrintProcessInfo(true);
BatchOperator train_sample =
new AkSourceBatchOp()
.setFilePath(Chap11.DATA_DIR + Chap11.TRAIN_SAMPLE_FILE);
BatchOperator test_data =
new AkSourceBatchOp()
.setFilePath(Chap11.DATA_DIR + Chap11.TEST_FILE);
final String[] featuresColNames =
ArrayUtils.removeElement(train_sample.getColNames(), Chap11.LABEL_COL_NAME);
GbdtClassifier gbdt = new GbdtClassifier()
.setFeatureCols(featuresColNames)
.setLabelCol(Chap11.LABEL_COL_NAME)
.setPredictionCol(Chap11.PREDICTION_COL_NAME)
.setPredictionDetailCol(Chap11.PRED_DETAIL_COL_NAME);
RandomSearchTVSplit randomSearch = new RandomSearchTVSplit()
.setNumIter(20)
.setTrainRatio(0.8)
.setEstimator(gbdt)
.setParamDist(
new ParamDist()
.addDist(gbdt, GbdtClassifier.NUM_TREES, ValueDist.randArray(new Integer[] {50, 100}))
.addDist(gbdt, GbdtClassifier.MAX_DEPTH, ValueDist.randInteger(4, 10))
.addDist(gbdt, GbdtClassifier.MAX_BINS, ValueDist.randArray(new Integer[] {64, 128, 256, 512}))
.addDist(gbdt, GbdtClassifier.LEARNING_RATE, ValueDist.randArray(new Double[] {0.3, 0.1, 0.01}))
)
.setTuningEvaluator(
new BinaryClassificationTuningEvaluator()
.setLabelCol(Chap11.LABEL_COL_NAME)
.setPredictionDetailCol(Chap11.PRED_DETAIL_COL_NAME)
.setTuningBinaryClassMetric(TuningBinaryClassMetric.F1)
)
.enableLazyPrintTrainInfo();
RandomSearchTVSplitModel bestModel = randomSearch.fit(train_sample);
bestModel.transform(test_data)
.link(
new EvalBinaryClassBatchOp()
.setPositiveLabelValueString("1")
.setLabelCol(Chap11.LABEL_COL_NAME)
.setPredictionDetailCol(Chap11.PRED_DETAIL_COL_NAME)
.lazyPrintMetrics()
);
BatchOperator.execute();
sw.stop();
System.out.println(sw.getElapsedTimeSpan());
}
static void c_3() throws Exception {
Stopwatch sw = new Stopwatch();
sw.start();
AlinkGlobalConfiguration.setPrintProcessInfo(true);
AkSourceBatchOp source =
new AkSourceBatchOp()
.setFilePath(Chap17.DATA_DIR + Chap17.VECTOR_FILE);
KMeans kmeans = new KMeans()
.setVectorCol(Chap17.VECTOR_COL_NAME)
.setPredictionCol(Chap17.PREDICTION_COL_NAME);
GridSearchCV cv = new GridSearchCV()
.setNumFolds(4)
.setEstimator(kmeans)
.setParamGrid(
new ParamGrid()
.addGrid(kmeans, KMeans.K, new Integer[] {2, 3, 4, 5, 6})
.addGrid(kmeans, KMeans.DISTANCE_TYPE,
new DistanceType[] {DistanceType.EUCLIDEAN, DistanceType.COSINE})
)
.setTuningEvaluator(
new ClusterTuningEvaluator()
.setVectorCol(Chap17.VECTOR_COL_NAME)
.setPredictionCol(Chap17.PREDICTION_COL_NAME)
.setLabelCol(Chap17.LABEL_COL_NAME)
.setTuningClusterMetric(TuningClusterMetric.RI)
)
.enableLazyPrintTrainInfo();
GridSearchCVModel bestModel = cv.fit(source);
bestModel
.transform(source)
.link(
new EvalClusterBatchOp()
.setLabelCol(Chap17.LABEL_COL_NAME)
.setVectorCol(Chap17.VECTOR_COL_NAME)
.setPredictionCol(Chap17.PREDICTION_COL_NAME)
.lazyPrintMetrics()
);
BatchOperator.execute();
sw.stop();
System.out.println(sw.getElapsedTimeSpan());
}
}