本章包括下面各节:
17.1 聚类评估指标
17.1.1 基本评估指标
17.1.2 基于标签值的评估指标
17.2 K-Means聚类
17.2.1 算法简介
17.2.2 K-Means实例
17.3高斯混合模型
17.3.1 算法介绍
17.3.2 GMM实例
17.4 二分K-Means聚类
17.5 基于经纬度的聚类
详细内容请阅读纸质书《Alink权威指南:基于Flink的机器学习实例入门(Java)》,这里为本章对应的示例代码。
package com.alibaba.alink; import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.clustering.KMeansPredictBatchOp; import com.alibaba.alink.operator.batch.clustering.KMeansTrainBatchOp; import com.alibaba.alink.operator.batch.dataproc.vector.VectorAssemblerBatchOp; import com.alibaba.alink.operator.batch.evaluation.EvalClusterBatchOp; import com.alibaba.alink.operator.batch.sink.AkSinkBatchOp; import com.alibaba.alink.operator.batch.source.AkSourceBatchOp; import com.alibaba.alink.operator.batch.source.CsvSourceBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.params.shared.clustering.HasKMeansDistanceType.DistanceType; import com.alibaba.alink.pipeline.clustering.BisectingKMeans; import com.alibaba.alink.pipeline.clustering.GaussianMixture; import com.alibaba.alink.pipeline.clustering.GeoKMeans; import com.alibaba.alink.pipeline.clustering.KMeans; import java.io.File; public class Chap17 { static final String DATA_DIR = Utils.ROOT_DIR + "iris" + File.separator; static final String ORIGIN_FILE = "iris.data"; static final String VECTOR_FILE = "iris_vec.ak"; static final String SCHEMA_STRING = "sepal_length double, sepal_width double, petal_length double, petal_width double, category string"; static final String[] FEATURE_COL_NAMES = new String[] {"sepal_length", "sepal_width", "petal_length", "petal_width"}; static final String LABEL_COL_NAME = "category"; static final String VECTOR_COL_NAME = "vec"; static final String PREDICTION_COL_NAME = "cluster_id"; public static void main(String[] args) throws Exception { BatchOperator.setParallelism(1); c_2_2(); c_3_2(); c_4(); c_5(); } static void c_2_2() throws Exception { if (!new File(DATA_DIR + VECTOR_FILE).exists()) { new CsvSourceBatchOp() .setFilePath(DATA_DIR + ORIGIN_FILE) .setSchemaStr(SCHEMA_STRING) .link( new VectorAssemblerBatchOp() .setSelectedCols(FEATURE_COL_NAMES) .setOutputCol(VECTOR_COL_NAME) .setReservedCols(LABEL_COL_NAME) ) .link( new AkSinkBatchOp().setFilePath(DATA_DIR + VECTOR_FILE) ); BatchOperator.execute(); } AkSourceBatchOp source = new AkSourceBatchOp().setFilePath(DATA_DIR + VECTOR_FILE); source.lazyPrint(5); KMeansTrainBatchOp kmeans_model = new KMeansTrainBatchOp() .setK(2) .setVectorCol(VECTOR_COL_NAME); KMeansPredictBatchOp kmeans_pred = new KMeansPredictBatchOp() .setPredictionCol(PREDICTION_COL_NAME); source.link(kmeans_model); kmeans_pred.linkFrom(kmeans_model, source); kmeans_model.lazyPrintModelInfo(); kmeans_pred.lazyPrint(5); kmeans_pred .link( new EvalClusterBatchOp() .setVectorCol(VECTOR_COL_NAME) .setLabelCol(LABEL_COL_NAME) .setPredictionCol(PREDICTION_COL_NAME) .lazyPrintMetrics("KMeans EUCLIDEAN") ); kmeans_pred .orderBy(PREDICTION_COL_NAME + ", " + LABEL_COL_NAME, 200, false) .lazyPrint(-1, "all data"); BatchOperator.execute(); new KMeans() .setK(2) .setDistanceType(DistanceType.COSINE) .setVectorCol(VECTOR_COL_NAME) .setPredictionCol(PREDICTION_COL_NAME) .enableLazyPrintModelInfo() .fit(source) .transform(source) .link( new EvalClusterBatchOp() .setVectorCol(VECTOR_COL_NAME) .setPredictionCol(PREDICTION_COL_NAME) .setLabelCol(LABEL_COL_NAME) .lazyPrintMetrics("KMeans COSINE") ); BatchOperator.execute(); } static void c_3_2() throws Exception { AkSourceBatchOp source = new AkSourceBatchOp().setFilePath(DATA_DIR + VECTOR_FILE); new GaussianMixture() .setK(2) .setVectorCol(VECTOR_COL_NAME) .setPredictionCol(PREDICTION_COL_NAME) .enableLazyPrintModelInfo() .fit(source) .transform(source) .link( new EvalClusterBatchOp() .setVectorCol(VECTOR_COL_NAME) .setPredictionCol(PREDICTION_COL_NAME) .setLabelCol(LABEL_COL_NAME) .lazyPrintMetrics("GaussianMixture 2") ); BatchOperator.execute(); } static void c_4() throws Exception { AkSourceBatchOp source = new AkSourceBatchOp().setFilePath(DATA_DIR + VECTOR_FILE); new BisectingKMeans() .setK(3) .setVectorCol(VECTOR_COL_NAME) .setPredictionCol(PREDICTION_COL_NAME) .enableLazyPrintModelInfo("BiSecting KMeans EUCLIDEAN") .fit(source) .transform(source) .link( new EvalClusterBatchOp() .setVectorCol(VECTOR_COL_NAME) .setPredictionCol(PREDICTION_COL_NAME) .setLabelCol(LABEL_COL_NAME) .lazyPrintMetrics("Bisecting KMeans EUCLIDEAN") ); BatchOperator.execute(); new BisectingKMeans() .setDistanceType(DistanceType.COSINE) .setK(3) .setVectorCol(VECTOR_COL_NAME) .setPredictionCol(PREDICTION_COL_NAME) .enableLazyPrintModelInfo("BiSecting KMeans COSINE") .fit(source) .transform(source) .link( new EvalClusterBatchOp() .setDistanceType("COSINE") .setVectorCol(VECTOR_COL_NAME) .setPredictionCol(PREDICTION_COL_NAME) .setLabelCol(LABEL_COL_NAME) .lazyPrintMetrics("Bisecting KMeans COSINE") ); BatchOperator.execute(); } static void c_5() throws Exception { BatchOperator.setParallelism(1); MemSourceBatchOp source = new MemSourceBatchOp(ROWS_DATA, new String[] {"State", "Region", "Division", "longitude", "latitude"} ); source.lazyPrint(5); source.select("Region").distinct().lazyPrint(-1); source.select("Division").distinct().lazyPrint(-1); source .groupBy("Region, Division", "Region, Division, COUNT(*) AS numStates") .orderBy("Region, Division", 100) .lazyPrint(-1); for (int nClusters : new int[] {2, 4}) { BatchOperator <?> pred = new GeoKMeans() .setLongitudeCol("longitude") .setLatitudeCol("latitude") .setPredictionCol(PREDICTION_COL_NAME) .setK(nClusters) .fit(source) .transform(source); pred.link( new EvalClusterBatchOp() .setPredictionCol(PREDICTION_COL_NAME) .setLabelCol("Region") .lazyPrintMetrics(nClusters + " with Region") ); pred.link( new EvalClusterBatchOp() .setPredictionCol(PREDICTION_COL_NAME) .setLabelCol("Division") .lazyPrintMetrics(nClusters + " with Division") ); BatchOperator.execute(); } } private static final Row[] ROWS_DATA = new Row[] { Row.of("Alabama", "South", "East South Central", -86.7509, 32.5901), Row.of("Alaska", "West", "Pacific", -127.25, 49.25), Row.of("Arizona", "West", "Mountain", -111.625, 34.2192), Row.of("Arkansas", "South", "West South Central", -92.2992, 34.7336), Row.of("California", "West", "Pacific", -119.773, 36.5341), Row.of("Colorado", "West", "Mountain", -105.513, 38.6777), Row.of("Connecticut", "Northeast", "New England", -72.3573, 41.5928), Row.of("Delaware", "South", "South Atlantic", -74.9841, 38.6777), Row.of("Florida", "South", "South Atlantic", -81.685, 27.8744), Row.of("Georgia", "South", "South Atlantic", -83.3736, 32.3329), Row.of("Hawaii", "West", "Pacific", -126.25, 31.75), Row.of("Idaho", "West", "Mountain", -113.93, 43.5648), Row.of("Illinois", "North Central", "East North Central", -89.3776, 40.0495), Row.of("Indiana", "North Central", "East North Central", -86.0808, 40.0495), Row.of("Iowa", "North Central", "West North Central", -93.3714, 41.9358), Row.of("Kansas", "North Central", "West North Central", -98.1156, 38.4204), Row.of("Kentucky", "South", "East South Central", -84.7674, 37.3915), Row.of("Louisiana", "South", "West South Central", -92.2724, 30.6181), Row.of("Maine", "Northeast", "New England", -68.9801, 45.6226), Row.of("Maryland", "South", "South Atlantic", -76.6459, 39.2778), Row.of("Massachusetts", "Northeast", "New England", -71.58, 42.3645), Row.of("Michigan", "North Central", "East North Central", -84.687, 43.1361), Row.of("Minnesota", "North Central", "West North Central", -94.6043, 46.3943), Row.of("Mississippi", "South", "East South Central", -89.8065, 32.6758), Row.of("Missouri", "North Central", "West North Central", -92.5137, 38.3347), Row.of("Montana", "West", "Mountain", -109.32, 46.823), Row.of("Nebraska", "North Central", "West North Central", -99.5898, 41.3356), Row.of("Nevada", "West", "Mountain", -116.851, 39.1063), Row.of("New Hampshire", "Northeast", "New England", -71.3924, 43.3934), Row.of("New Jersey", "Northeast", "Middle Atlantic", -74.2336, 39.9637), Row.of("New Mexico", "West", "Mountain", -105.942, 34.4764), Row.of("New York", "Northeast", "Middle Atlantic", -75.1449, 43.1361), Row.of("North Carolina", "South", "South Atlantic", -78.4686, 35.4195), Row.of("North Dakota", "North Central", "West North Central", -100.099, 47.2517), Row.of("Ohio", "North Central", "East North Central", -82.5963, 40.221), Row.of("Oklahoma", "South", "West South Central", -97.1239, 35.5053), Row.of("Oregon", "West", "Pacific", -120.068, 43.9078), Row.of("Pennsylvania", "Northeast", "Middle Atlantic", -77.45, 40.9069), Row.of("Rhode Island", "Northeast", "New England", -71.1244, 41.5928), Row.of("South Carolina", "South", "South Atlantic", -80.5056, 33.619), Row.of("South Dakota", "North Central", "West North Central", -99.7238, 44.3365), Row.of("Tennessee", "South", "East South Central", -86.456, 35.6767), Row.of("Texas", "South", "West South Central", -98.7857, 31.3897), Row.of("Utah", "West", "Mountain", -111.33, 39.1063), Row.of("Vermont", "Northeast", "New England", -72.545, 44.2508), Row.of("Virginia", "South", "South Atlantic", -78.2005, 37.563), Row.of("Washington", "West", "Pacific", -119.746, 47.4231), Row.of("West Virginia", "South", "South Atlantic", -80.6665, 38.4204), Row.of("Wisconsin", "North Central", "East North Central", -89.9941, 44.5937), Row.of("Wyoming", "West", "Mountain", -107.256, 43.0504) }; }